Surface and Groundwater Interaction in RiverWare

New seepage method to solve for seepage given river elevation and water table elevation (same technique used in MODFLOW – STR or RIV package)

Gaining Reach

aquifer

Reach elevation computed by stage method
Water table elevation linked to groundwater object

Seepage = Head Difference * Conductance

- Conductance = K^{LW}/m
- K = hydraulic conductivity of riverbed material
- L = reach length
- w = reach width
- m = streambed thickness
- Head difference is current timestep reach elevation minus previous timestep water table elevation (to avoid iteration)

Distribution Canal

Same seepage method added to Distribution Canal object

No stage method, instead input Canal Elevation

Enhancements to Groundwater Object

- New solution method added to groundwater objects
- Connected to reach or canal for SW/GW interaction based on aquifer and reach/canal elevation
- Connected to adjacent groundwater objects to compute groundwater flows based on head differences between groundwater objects
 - All flows are computed based on previous elevations to avoid iteration
 - Each GW object acts like an aquifer cell or element

Enhancements to Groundwater Object

Evapotranspiration

Method to compute ET as a function of water table elevation (user input table)

Deep Percolation

 Method to compute flow to deep aquifer as a function of water table elevation and deep aquifer elevation/head (user input value)

Enhancements to Groundwater Object

Groundwater Flow and Deep Aquifer flow:
Based on head difference between adjacent gw objects

 GW Flow In = Conductance * (Adjacent Previous Timestep Elevation – Previous Timestep Elevation)
Possible GW Flow value for each of the four sides of a GW object (user selectable)

 Deep Aquifer Flow Out = Conductance * (Previous Elevation – Previous Deep Aquifer Elevation)

Groundwater Solution

Storage (t) = Storage (t-1) + Seepage from SW + Net Inflows from Adjacent GW Objects – Pumping – ET – Deep Aquifer Flow

Elevation (t) = Elevation (t-1) + (Change in Storage / (Specific Yield * Area))

Direct Connection to MODFLOW

- Exploring direct connection between RiverWare and MODFLOW
- Will make use of the ability to call DMIs from Rules
- DMI executables will take RiverWare output and translate to input for RIV and/or STR packages
 MODFLOW will pause between each stress period and send output back to RiverWare via DMI

Questions/Suggestions?